

Abstracts

Twist Modes in Magnetoplasma-Filled Circular Waveguides

K.S. Champlin and G.H. Glover. "Twist Modes in Magnetoplasma-Filled Circular Waveguides." 1970 Transactions on Microwave Theory and Techniques 18.9 (Sep. 1970 [T-MTT]): 566-570.

The properties of the axially symmetric normal modes of a circular waveguide containing an axially magnetized gas or solid-state plasma (i.e., the so-called Faraday configuration) are examined. Of particular interest is the fact that transverse electric fields demonstrate a characteristic twisting wave motion rather than the more familiar rotating motion of the circularly polarized $TE^{\circ}/sub 11/$ limit modes or the undulating motion of the normal modes of an empty waveguide. Modes demonstrating this unique wave motion are termed "twist" modes. Within a restricted range of magnetic field, twist modes divide into evanescent (TE-limit) modes and low-loss propagating (TM-limit) modes. Since wavelengths of propagating modes depend on the axial B field, twist modes in solid-state magnetoplasmas such as InSb may find applications in magnetically tunable millimeter and submillimeter devices.

[Return to main document.](#)